Physics A

Advanced GCE 7883

Mark Scheme for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCE Physics A (7883)
 Advanced Subsidiary GCE Physics (3883)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
2821 Forces and Motion 1
2822 Electrons and Photons 10
2823/01 Wave Properties/Experimental Skills 1 Written Paper 18
2823/03 Wave Properties/Experimental Skills 1 Practical Examination 23
2824 Forces, Fields and Energy 30
2825/01 Cosmology 33
2825/02 Health Physics 37
2825/03 Materials 40
2825/04 Nuclear and Particle Physics 43
2825/05 Telecommunications 48
2825 Common Question 53
2826/01 Unifying Concepts in Physics 54
2826/03 Experimental Skills 2 Practical Examination 57
Grade Thresholds 64

2821 Forces and Motion

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 1 \& a \& i \& \begin{tabular}{l}
A vector has a direction \\
[acceleration, force and weight] 3 correct scores 2 \\
2 correct scores 1. (-1 for incorrect scalar answers)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B2
\end{tabular} \& \begin{tabular}{l}
This is the minimum required. The reverse argument that a scalar does not have a direction can be implied. Allow extra comments such as magnitude, size, number and quantity but identified quantities such as a scalar has a distance and a vector has a distance and direction should not be allowed. \\
e.g, acceleration, force and power would score 0 (+1 and -1) acceleration, force, power and weight would score1 (+2 and -1)
\end{tabular} \\
\hline \& b \& i 1
2

3 \& \[
$$
\begin{aligned}
& \left(v_{v}=\right) 25 \sin 60 \text { or } 25 \cos 30 \\
& \quad=21.7(21.65)\left(\mathrm{m} \mathrm{~s}^{-1}\right) \\
& v=u+\text { at } \\
& 0=21.7-(9.81 \times \mathrm{t}) \\
& \mathrm{t}=2.2(1)(\mathrm{s}) \\
& \text { distance }=\text { speed } x \text { time } \\
& \text { using speed }=25 \cos 60 \text { or } 25 \sin 30 \\
& \text { using time }=2 t \\
& =55(.2)(\mathrm{m})
\end{aligned}
$$

\] \& | A1 |
| :--- |
| M0 |
| C1 |
| C1 |
| A1 | \& | Ort $=(v-u) / \mathrm{a}$ or $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ |
| :--- |
| Do not accept $t=2$ (SF error). If $g=10$ used then penalise -1 but only once on the paper |
| Any equation with acceleration cannot score these marks unless a=0 stated |
| Correct horizontal component (12.5) |
| Note ECF from (b)(i) 2 |

\hline
\end{tabular}

Question		Expected Answers	Marks	Additional Guidance
	ii 1	straight line negative / positive gradient line continues into negative / positive v values with the same gradient same time in both + and - regions and to same v (only if correct line drawn) decreasing gradient increasing gradient (roughly same gradient at beginning and end)	B1 B1 B1 B1 B1	The velocity must start from a non zero point and be a straight line as far as the time axis If time not labelled at half way mark, then use the ruler available to check times and allow 3 mm difference. Judge velocities by eye But not reaching a vertical line at end
b	iii QWC	ANY FOUR: PE zero or minimum at $A /$ rises from A to H I maximum at H / falls from H to B . KE max at $A /$ falls from A to H / rises from H to B. KE is a minimum at H (not zero) $K E$ is converted to PE / PE is converted to $K E$ loss in $P E=$ gain in $K E$ $K E / P E$ at B is the same as at A Spelling and punctuation	$\begin{gathered} \text { MAX } \\ \text { B4 } \\ \text { B1 } \end{gathered}$	Only one of these is required for the mark but any further contradictions about the PE would cancel this mark. Similarly for the KE statements The candidate's first four statements should be marked with a cross or a tick on script and the remainder checked for contradictions only. Do not allow or penalise: $\mathrm{PE}=\mathrm{KE}$ half way up (AW) Penalise if more than two errors in spelling or punctuation. No tick or cross needed. Allow GPE and KE
		Total	19	

Question			Expected Answers	Marks	Additional Guidance
2	a	i	Resultant force or sum of forces is zero Resultant or sum of torque / moments is zero	B1 B1	Do not allow: upward forces equal downward forces / forces are balanced / all forces are equal (and opposite) Allow: sum of clockwise moments equals sum of anticlockwise moments
		ii	Force x perpendicular distance from the pivot / point / axis	B1	
	b	i	850×2 or 4400×4 or T x 3 (Sum of clockwise $=) 850 \times 2+4400 \times 4$ equating this sum with the anticlockwise moment T x 3 and solving to give $T=6400$ (6433) (N)	B1 B1 B1	Any correct moment scores the first mark The two correct clockwise moments added The clockwise and anticlockwise moments are then equated and solved and not just the clockwise divided by 3
		ii	Force at A drawn up and to the right of vertical allow up to parallel with beam Another force is required to give zero resultant force or up and down I left and right forces do not balance	B1 B1	Mark diagram with a tick or cross to show F has been looked for Do not accept the system is not in equilibrium (that is in the question)
			Total	8	

Question			Expected Answers	Marks	Additional Guidance
4	a		Either: Resolve horizontally F = T $\cos 60$ Resolve vertically $2000=$ Tsin60 $\mathrm{F}=1155(\mathrm{~N})$ Or correct triangle of forces correct trig. statement $\mathrm{F}=1155(\mathrm{~N})$ Or correct scale diagram Scale given $\mathrm{F}=1155(\mathrm{~N})$	C1 C1 A1 C1 C1 A1 C1 C1 A1	Allow answers to two SF (1200) Basic shape (30,60 and 90), two forces labelled (arrows not needed). Give this mark even if 30 and 60 reversed (this gives 3464 N and would gain 1 mark max). Allow answers to two SF (1200) As above (for triangle of forces) Allow answers from 1100 to 1200 (N)
	b	i	Larger mass, weight, larger angle or larger force F Greater kinetic energy (change) or greater momentum (change) Allow greater speed at the point of collision Iwhere it hits the wall or mass is larger hence force on wall is larger using $F=m a$	B1 B1	Not longer cable Do not accept It hits with greater force on its own Do not accept travels with greater acceleration hence force is larger using $F=m$.
			Total	5	

Question			Expected Answers	Marks	Additional Guidance
5	a	I	$\begin{aligned} W_{c} & =2.4 \times 10^{5} \times \sin 4.8 \\ & =2.0 \times 10^{4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Allow W x sin 4.8
	b		$\begin{aligned} & W=F \times d \\ & W / t=F \times v \\ & \\ & =12000 \times 15 \\ & \\ & =180000\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	C		$\begin{aligned} P & =W / t \quad P=F \times v \\ P & =3.2 \times 10^{4} \times 15 \\ & =480000(\mathrm{~W}) \end{aligned}$	C1 A1	
	d		$\begin{aligned} \text { pe } / \mathrm{t} & =480000-180000 \\ & =300000 \end{aligned}$ allow alternative method of determining the vertical height moved in one second and use of mgh $\text { e.g. } h=15 \sin 4.8=1.255$ $\begin{aligned} \text { W/t }=\mathrm{mgh} / \mathrm{t} & =2.4 \times 10^{5} \times 1.255 \\ & =300000 \end{aligned}$ unit: W or J s ${ }^{-1}$	C1 A1 C1 A1 B1	Do not give a mark for PE = mgh on its own. Do not give a mark for W/t or mgh/t on their own Do not give a mark for W/t or mgh/t on their own Allow $\mathrm{kJ} \mathrm{s}^{-1} / \mathrm{kW}$ if consistent with numbers used Allow $\mathrm{N} \mathrm{m} \mathrm{s}^{-1}$ but not $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$

| Question | | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :--- | :---: | :---: | :---: |
| 年 | | less | M0 | |
| | | Component of weight acts down the slope | A1 | Weight / force of gravity helps the braking (AW) (not gravity helps
 braking)
 Some KE is converted to PE and hence less work has to be done by
 the braking force |

Question			Expected Answers	Marks	Additional Guidance
6	a	i	$\begin{aligned} \mathrm{E} & =\text { stress } / \text { strain } \\ & =(\mathrm{F} \times I) /(\mathrm{A} \times \mathrm{e}) \\ & =(60 \times 4) /\left(0.63 \times 10^{-6} \times 3.3 \times 10^{-3}\right) \\ & =1.15 \times 10^{11}(\mathrm{~Pa}) \end{aligned}$	C1 C1 C1 A1	Any correct points from the graph up $82(\mathrm{~N})$ Max $2 / 4$ if force value is greater than 82 N Allow 1.2 and 1.1 if consistent with correct values from graph e.g 36 N and 2.0 mm .
		ii	Strain energy $=1 / 2 \times F \times$ e or area under graph $\begin{aligned} & =0.5 \times 80 \times\left(4.4 \times 10^{-3}\right) \\ & =0.176(\mathrm{~J}) \end{aligned}$	C1 A1	Allow 4.35×10^{-3} to give 0.174 (J) Do not penalise the omission of 10^{-3} in this part if already penalised in section (a)(i)
	b		graph does not return to zero extension (may be on the graph) / there is permanent extension	B1	Do not allow answers that suggest it will return if it has not passed its elastic limit or any statement that explicitly states that the extension is the same as when the force was applied
	C		wire: ductile I malleable Hooke's law obeyed / force proportional to extension at start / over straight line section Elastic in first section Plastic when larger forces applied		Ignore comparative values of Young modulus, breaking force etc (but do not take these statements as part of the six assessed statements).

Question		Expected Answers	Marks	Additional Guidance
Glass is brittle Glass has no plastic region Glass has straight line section only	MAX B6	Allow from a sketch graph.		
	Use of technical language	B1	Stop marking after ticks and crosses add up to 6 but check for contradictions in any remaining text. Candidates are using correctly 2 of Hooke's law, extension proportional to force, elastic, plastic, ductile, malleable and brittle. We are not assessing spelling etc. in this section.	

2822 Electrons and Photons

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 1 \& a \& \& Opposite (direction) \& B1 \& \begin{tabular}{l}
Allow 'positive to negative for one and negative to positive for other' even if physics is incorrect (1) \\
Not 'different' direction(s) - because this is stated in question
\end{tabular} \\
\hline \& b \& \& (p.d =) energy (transfer)/charge \& B1 \& \begin{tabular}{l}
Allow \((V=) \frac{W}{Q}\) or \((V=) \frac{E}{Q}\) where \(W\) (or \(\left.E\right)=\) energy / work (done) and \(Q=\) charge. (1) \\
For mark above, there is no need to define \(V\). \\
Not energy lost by unit charge / by coulomb \\
For a mark the idea of 'division' or 'per' is important
\end{tabular} \\
\hline \& c \& i \& \begin{tabular}{l}
(The kilowatt-hour is) the energy (transferred) / work (done) \\
when a 1 kW device is operated for 1 hour
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
The first mark is for realising that kW h is an energy or work (done) unit. \\
The second mark is for referring to 1 kW (or 1000 W) and 1 hour (or 3600 s). The second mark can only be awarded if the first mark has been scored. \\
Not 'power transferred by a 1 kW device working for 1 hour'.
\end{tabular} \\
\hline \& \& ii \& ```
(Number of kW h =) 1.8 < 1500 (= 2700)
(cost =) 2700 < 9.0
cost = (£) 243 or 240
``` \& C1

A1 \& | Special cases: |
| :--- |
| Allow 1 mark for bald 2700 |
| Allow 2 marks for bald 243 or 240 |
| Allow 1 mark for $£ 2.43 \times 10^{5}$ (only one error made for not converting the power into kilowatts) |
| Allow 1 mark for $£ 2.43 \times 10^{4}$ (only one error made for not converting pence into pounds) |
| Not $£ 2.43 \times 10^{7}$ or $£ 24300000$ because two errors have been made (working in pence and watts) |
| Reject bald ' $2.7 \times 10^{6}$ ' for multiplying 1800 and 1500 | <br>

\hline \& \& \& Total \& 6 \& <br>
\hline
\end{tabular}

| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | a | i | A diagram with three resistors in series <br> total resistance $=44(\Omega)$ | B1 <br> B1 | There is one mark for the diagram and one mark for the resistance value - the marks are independent of each other The resistors values are not necessary on the diagram The resistors must be shown as oblongs |
|  |  | ii | A diagram with three resistors in parallel <br> Use of $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\left(+\frac{1}{R_{3}}\right)$ $\begin{aligned} & R=1 /\left(10^{-1}+12^{-1}+22^{-1}\right) \\ & \text { total resistance }=4.37(\Omega) \end{aligned}$ | B1 <br> C1 <br> A1 | There is one mark for the diagram and two marks for the resistance value - the marks are independent of each other <br> The resistors values are not necessary on the diagram. <br> The resistor symbol is oblong or consistent with (a)(i) <br> Allow A bald $4.37(\Omega)$ or $4.4(\Omega)$ scores two marks for calculation Answer can be 2 sf or more <br> Special case: $4(\Omega)$ scores 1 mark for the calculation part |
|  | b |  | $\begin{aligned} & 108 \\ & 9 \\ & 45 \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Allow $5 \times$ 'previous answer' - ecf (1) |
|  |  |  | Total | 8 |  |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Expected Answers \& Marks \& Additional Guidance \\
\hline 3 \& a \& i \& \begin{tabular}{l}
Correct symbol for thermistor \\
The resistance decreases as the temperature (of thermistor) increases (ora)
\end{tabular} \& B1 \& \begin{tabular}{l}
To score the symbol mark, must have an oblong with a 'line + bend at one end' through the oblong in any orientation (do not allow arrow) \\
Allow It increases as the temperature decreases Not any reference to 'heat' instead of temperature
\end{tabular} \\
\hline \& \& ii \& \begin{tabular}{l}
Correct symbol for LDR \\
The resistance decreases as intensity / light increases (ora)
\end{tabular} \& B1
B1 \& \begin{tabular}{l}
To score the symbol mark, must have an oblong plus a minimum of one arrow towards the oblong - the circle round the oblong is not necessary. \\
Allow In light the resistance is low / small \\
(1) Allow In dark(ness) the resistance is high / large / big (1)
\end{tabular} \\
\hline \& \& iii \& \begin{tabular}{l}
A diagram with a resistor / variable resistor and an LDR connected in series to a supply / battery / cell \\
A voltmeter connected is across the resistor or the LDR
\end{tabular} \& M1

A1 \& | The LDR symbol is ecf from (a)(ii) |
| :--- |
| The second mark can only be scored if the first mark is awarded and a correct symbol for a voltmeter (circle with a letter V) | <br>

\hline \& b \& i \& A line / curve of positive gradient \& B1 \& | To score this mark, the line or curve must have a finite resistance value at $0^{\circ} \mathrm{C}$ - allow resistance intercept at or above the 'top of zero' on the l.h.s. |
| :--- |
| Not A line/curve that becomes horizontal | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question \& Expected Answers \& Marks \& Additional Guidance \\
\hline ii \& \begin{tabular}{l}
Place the wire in a (water) bath / use a hot plate / oven \\
Any remaining four from: \\
1. Connect conductor / wire in series with a battery / cell / power supply \\
2. Ammeter placed in series (with wire) / voltmeter placed in parallel (with wire) \\
3. Record / read / measure current / voltage (across the wire) (AW) \\
4. (Calculate the resistance using the equation:) \(R=\frac{V}{I}\) \\
5. Thermometer / 'temperature probe' mentioned \\
6. Measurements (for \(V\) and \(I\) ) repeated for different temperatures
\end{tabular} \& B1

B1 $\times 4$ \& | Must show ticks on the script to indicate where marks are being awarded |
| :--- |
| Not 'heat the wire' |
| Numbered marking points 1 and 2 can be scored on diagram or in the text but all others marking points must be written |
| Not ' $V=I R$ ' for numbered marking point 4 |
| Not 'Plot a graph of $R$ against temperature' for numbered marking point 6 | <br>

\hline \& | QWC |
| :--- |
| Structure and organisation mark |
| Spelling and Grammar mark | \& B1

B1 \& | For QWC marks, the answer must involve physics, which attempts to answer the question - otherwise the mark for QWC is zero. |
| :--- |
| Award this mark if the whole answer is well structured Bulleted answers are allowed - must have full stops |
| More than two spelling mistakes or more than two grammatical errors mean that this mark is lost | <br>

\hline \& Total \& 14 \& <br>
\hline
\end{tabular}




| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | a |  | Any four from: <br> 1. Electrons travel / move as 'waves' <br> 2. Electrons are diffracted <br> 3. Diffraction by atomic planes / gaps between atoms / atoms (AW) <br> 4. The wavelength of the electron is similar to atomic separation / gap / size (AW) <br> 5. Reference to $\lambda=\frac{h}{m v} / \lambda=\frac{h}{p}$ <br> 6. where $\lambda=$ wavelength, $h$ is Planck constant, $m=$ mass (of electron) and $v=$ speed / velocity (or $p=$ momentum) | B1 $\times 4$ | Must show ticks on the script to indicate where marks are being awarded <br> Not Electrons 'pass through' as waves for first marking point <br> Not 'diffracted by gaps / holes in graphite' for marking point 3. <br> Marking point 6. can only be scored if the de Broglie equation is given |
|  | b | i | Allow a number in the range $1 \times 10^{-13}(\mathrm{~m})$ to $5 \times 10^{-8}(\mathrm{~m})$ | B1 |  |
|  |  | ii | speed $=h /\left(9.11 \times 10^{-31} \times\right.$ answer to $\left.(\mathrm{b})(\mathrm{i})\right)$ <br> correct value for the speed | $\overline{\mathrm{C} 1}$ <br> A1 | The first mark is for correct substitution of their value for wavelength - the value for $h$ is not required. It is the same as: speed $=7.28 \times$ $10^{-4} /(\mathrm{b})(\mathrm{i})$ <br> Allow 2 marks for a bald correct answer (in $\mathrm{m} \mathrm{s}^{-1}$ ) <br> The answer must be 2 sf or more |
|  |  |  | Total | 7 |  |



## 2823/01 Wave Properties/Experimental Skills 1 Written Paper



| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | a | i | diagram correctly showing $\boldsymbol{C}$ <br> for light passing from dense to less dense medium (WTTE OR shown) | B1 | If no diagram allow a statement that $\boldsymbol{C}$ is the angle (of incidence) that results in angle of refraction of $90^{\circ}$ (WTTE). <br> Allow refracted ray shown close to interface <br> Statement made or C shown in more dense medium (this mark may be scored even if C is shown between ray and interface) |
|  |  | ii | TIR: when angle of incidence is greater than critical angle (or C) all the light is reflected internally (WTTE) OR SHOWN on diagram | B1 | If only a diagram is shown with no statement - the angle of incidence must be shown within the diagram or labelled as being bigger than $\mathbf{C}$. |
|  | b |  | $\begin{aligned} & \text { Correct use of } n=1 / \operatorname{sinC} \text { : } \\ & \text { e.g. } n=1 / \sin 39 \\ & n=\mathbf{1 . 5 9} \end{aligned}$ | C1 <br> A1 | Allow 1.6 but not 1.5 or 2 |
|  | C | i | different rays take different paths (WTTE) they arrive at different times (WTTE) causing distortion (of signal) (WTTE). | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Do not allow 'some rays travel faster' <br> allow 'smear' 'spread' etc but do not allow 'weaker' |
|  |  | ii | accept any valid method, e.g. use a monomode fibre (WTTE) OR use cladding <br> to reduce number of alternative paths (WTTE) | B1 B1 | Allow very thin/narrow fibre. Do not allow small fibre <br> For cladding explanations this mark may also be scored for stating that more rays are now refracted out/lost. |
|  |  |  | Total | 10 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | a |  | PARALLEL (WTTE) and PERPENDICULAR (WTTE) | B1 |  |
|  | b | i | POLARISATION | B1 |  |
|  | b | ii | Any 3 each scores 1 mark e.g.: <br> REFLECTION, REFRACTION, <br> DIFFRACTION, INTERFERENCE, <br> DISPERSION.CARRY <br> ENERGY/INFORMATION\{do not accept characteristics like wavelength, frequency, period, velocity, amplitude etc\} | $\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ |  |
|  | C | i | period $=0.004 \mathrm{~s}\left(\right.$ (or $4.0 \times 10^{-3} \mathrm{~s}$ or 4 ms$)$ | B1 | 1/250 is insufficient to score this mark |
|  | C | ii | ‘length’ of a wave drawn 4cm (allow ecf from (c) (i) <br> 'amplitude' of both crests and troughs drawn is $\mathbf{3 c m}$ | B1 <br> B1 | Must see something above and below the time-axis <br> If less than one cycle drawn no mark can be scored If two waves are carelessly drawn with different 'lengths' award mark if at least one is correct. |
|  | C | iii | 10 times more waves in CRO trace (WTTE) | B1 | If 10 or1/10 is not seen, no mark is scored. |
|  | C | iv | recall of $v=f \lambda$ <br> substitution of correct values for $v$ and $f$ $\lambda=1.32 \mathrm{~m}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Award this mark even if the equation is incorrect. <br> Allow 1.3 but not 1 |
|  |  |  | Total | 12 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | a |  | waves <br> meet/cross/interfere/superpose/combine /interact resultant displacement is the sum of the individual waves (WTTE) | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Do NOT allow wave sources meet <br> Must see displacement NOT amplitude; must see sum or words to that effect such as total or add. |
|  | b | i | $\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}$ OR difference in length between paths from $S_{1}$ and $S_{2}$ (WTTE) | B1 | Do not allow general answers that do not make reference to $\mathrm{S}_{1}$ and $S_{2}$ or $P$. |
|  | b | ii | $10, \lambda$, (or $2 \lambda, 3 \lambda$ etc) any two correct <br> $21 / 2 \lambda, 3 / 2 \lambda$ (OR $5 / 2 \lambda, 7 / 2 \lambda$ etc) any two correct | B1 B1 | $\mathrm{n} \lambda$ alone may score this mark only if n is defined as an integer (WTTE) somewhere. <br> Allow ( $n+1 / 2$ ) $\lambda$ provided $n$ is defined somewhere ( n ) $\lambda$ and $(\mathrm{n}+1 / 2$ ) $\lambda$ scores 1 mark if n undefined no ecf |
|  | C | i | labelled diagram of arrangement: <br> light source, double-slit and screen in correct relative positions correct labelling (at least 2 of the above 3 ) <br> measurements: <br> measure distance between neighbouring bright (or dark) images \{allow 'fringe separation'\} <br> measure distance between double-slit and screen <br> formula: recall of $\lambda=a x / D$ <br> ALL symbols correctly defined or correctly shown on diagram: | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 | Ignore the presence or absence of a single-slit <br> Cannot score labelling mark for invalid arrangement <br> Do not award these marks unless the word measure (WTTE) is seen. Some candidates may merely list all the factors involved. Ignore reference to measurement of a. <br> Allow any other formula if correct for their defined symbols <br> a = slit separation; $x=$ fringe separation <br> $D=$ distance from slits to screen Allow BOD for loose definition of $D$ if already penalised in measurement section. |
|  | C | ii | ANY TWO valid suggestions <br> e.g. white central image colour (fringes) OR spectra (on either side) | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Also allow 'red fringes are further from centre' |
|  |  |  | Total | 13 |  |


| Question |  |  | Expected Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | a |  | pluck/stroke/disturb/vibrate/twang string | B1 | Allow this mark for oscillating P or Q |
|  | b | i | correct diagram of fundamental i.e one loop | B1 | Either full envelope or instantaneous pattern scores mark. Ignore any labelling of nodes and antinodes |
|  |  | ii | wavelength $=2 \times 1.2=2.4 \mathrm{~m}$ | B1 | Allow ecf for candidates diagram |
|  | c |  | Correct standing wave drawn i.e 3 'loops' <br> All correct nodes labelled N for candidates diagram <br> All correct antinodes labelled A for candidates diagram | B1 <br> B1 <br> B1 | Either full envelope or instantaneous pattern scores mark <br> Allow lack of Ns labelled at P and Q if the others are correct. If all A and N are exactly reversed then award one of these two marks. |
|  |  |  | Total | 6 |  |

## 2823/03 Wave Properties/Experimental Skills 1 Practical Examination

Planning Exercise - Skill P
A1 Labelled diagram showing strain gauge attached to the wood with thermometer. ..... 1
A2 Correct procedure ..... 1
(i.e. measure temperature, measure resistance; change temperature andmeasure new resistance - allow graph or table). Method must be workable.
A3 Use of kiln/oven/freezer to change temperature ..... 1
B1 Use of glue/adhesive/superglue to fix strain gauge to wood ..... 1
B2 Circuit diagram for measuring resistance (ammeter/voltmeter; ohmmeter; ..... 1 wheatstone bridge)
B3 Wait for temperature of wood to stabilise ..... 1
C1 Safety precaution with reason. ..... 1e.g. gloves to handle hot/cold surfaces, gloves to protect skin when applying glue;ventilation/ fume cupboard for fumes from glue.
C2 Keep humidity constant. ..... 1
R1/2 Evidence of the sources of the researched material. ..... 2/1/0
Two or more (vague) references or one detailed reference score one mark. Detailed references from two or more independent sources scores two marks. Detailed references should have page or chapter numbers or be internet pages.
D1/2/3/4 Any further relevant detail. Examples of creditworthy points are listed below. max 4
$\checkmark$ Typical resistances of a strain gauge (20 $\Omega-1000 \Omega$ )$\checkmark$ Determination of ammeter range or ohmmeter range.$\checkmark$ Method of checking humidity (humidity sensor or hygrometer).
$\checkmark$ Discussion of strain along and across the grain.
$\checkmark$ Discussion of temperature compensation (including self compensation)
$\checkmark$ Discussion of choice of glue to avoid differential expansion
$\checkmark$ Method of determining resistance for bridge methods.
$\checkmark$ Evidence of preliminary investigation in the laboratory.
QWC Quality of written communication ..... 2/1/0
This is for the organisation and sentence construction. Accounts that are rambling, or where the material is not presented in a logical order will not score these marks

16 marks total.

## Question 1

(c) Measurements

2/1/0
Write the number of readings as a ringed total next to the table of results.
Six sets of values for $x$ and $d$ scores 2 marks, five sets scores 1 mark.
(c) Measurements

At least one value of $x>0.200 \mathrm{~m}$ scores one mark.
Tick $\checkmark_{R}$ for first value greater than 0.200 m . Do not accept 0.200 m .
No help from Supervisor scores one mark.
(c) Column headings in the table and consistency of raw readings

One mark for column headings for $x$ and $d$ correct. Tick $\checkmark_{H}$ or $\mathbf{x}_{H}$.
Allow $x / m ; x(m) ; x$ in $m$.
Ignore units in the body of the table.
One mark for the consistency of $x$ and $d$ which must be to the nearest mm e.g. 0.001 m .

$$
\text { Tick } \checkmark_{\mathrm{C}} \text { or } \mathbf{x}_{\mathrm{C}}
$$

(d) Axes

If false origin on $x$-axis, indicate with "FO".
Sensible scales must be used. Awkward scales (e.g. 3:10, 6:10, 7:10) are not allowed.
The scales must be labelled with the quantities plotted. Ignore units.
Do not allow more than two and a half large squares without a scale label.
One mark for each correct axis. Tick $\checkmark_{\mathrm{A}}$ or $\mathrm{x}_{\mathrm{A}}$
(d) Size of graph

2/1/0
Plotted points must occupy at least half the graph grid in both $x$ and $y$ directions (i.e. $4 \times 6$ large squares).

One mark for each correct axis. Tick $\checkmark_{\mathrm{s}}$ or $\boldsymbol{x}_{\mathrm{S}}$ or $\leftrightarrow$ or $\uparrow$
(d) Plotting of points

Count the number of plots and write as a ringed number on the graph grid.
All observations must be plotted. Check a suspect plot. Tick if correct otherwise indicate the correct position.
If the plot is accurate $\leq$ half a small square, then two marks awarded.
One mark if the plot is out by > half a small square and < than one small square.
(d) Line of best fit and quality of results.

For best fit line judge by scatter of points about the line.
There must be a fair scatter of points either side of the line of best fit.
Allow line through five trend plots for full credit (if done well).
Do not allow a line through a curved trend or kinked line.
$\checkmark_{L}$ or $x_{L}$. If incorrect indicate how the line can be rotated.
For quality, judge by scatter of points about the examiner's line of best fit.
Six good trend plots on the graph grid needed for this mark to be scored. $\checkmark_{Q}$ or $x_{Q}$.
(e)(i) Gradient

The hypotenuse of the $\Delta$ must be $\geq$ half the length of the drawn line. 1 mark.
Read-offs must be accurate to half a small square and ratio correct. 1 mark. If a read-off is incorrect, ring it and write in the correct value.
(e)(ii) $\quad y$-intercept ..... 1/0
Must be negative and
expect the value to be read from the $y$-axis to an accuracy of half a small square.
Or correct substitution from point on line into $y=m x+c$.
Allow ecf from gradient calculation.
(f) (i) Candidate's gradient value equated with $Q / M$ (can be implied from working)
Value of $Q$ correctly determined (= gradient $\times M=$ gradient $\times 0.100$ ).
Sig Figs of $Q$ : allow 2 or 3 only.
Unit of $Q$ (kg unless clear from working that it is g ). ..... 4/3/2/1/0
(f) (ii) $y$-intercept equated with $-0.2 R / M$ (can be implied from working).
Value of $R$ correctly determined (= $y$-intercept $\times M / 0.2=y$-intercept $\times 0.5$ )
Sig Figs of $R$ : allow 2 or 3 only ..... 3/2/1/0
(g) (i) Calculation of percentage difference and quality.
Expect to see difference/either $R$ value x100. ..... 1/0
Candidate's value of $R$ within $10 \%$ scores one mark. ..... $1 / 0$Indicate OOR if mark not awarded.Do not award this mark if the method in (f) (ii) is incorrect.
(g) (ii) 1. Random error. ..... $1 / 0$
Reference to scatter of points and appropriate conclusion. 2. Systematic error. ..... 1/0
Reference to percentage difference and appropriate conclusion.
28 marks available. Write the mark as a ringed total at the bottom of page 7.

## Question 2

(a) I and w measured to nearest millimetre and A calculated correctly (about $150 \mathrm{~cm}^{2}$ ).

1
(b) (i) Evidence needed to award these marks.
$\Delta w=\Delta l=0.1 \mathrm{~cm}$
1
Calculates percentage uncertainties correctly (about 1\% and 0.67\%).
(ii) Adds percentage uncertainties from (b) (i).
(e) Repeats experiment gaining a larger value for $t$ and $t>1 \mathrm{~s}$
(f) Inverse proportionality ideas.

Method to prove or disprove inverse proportionality
(e.g. determines constant of proportionality).

Appropriate conclusion based on their method of proving or disproving proportionality.
Vague answers will not score this second mark.
No method or wrong method loses both these marks
(g) Evaluation of procedure

Relevant points from the table must be underlined and ticked with the appropriate marking letter.

|  | Problem | Solution |
| :--- | :--- | :--- |
| A | Difficulty in releasing bob and <br> starting the timing simultaneously. | Release from a larger amplitude and start <br> when amplitude is 6 cm. |
| B | Difficulty in knowing when to stop <br> timing or difficulty in judging <br> amplitude (parallax). | Use of a reference mark/ slow motion video / <br> motion sensor with much detail <br> Bob closer to ruler. |
| C | Oscillations not always in the <br> vertical plane or wobbling or hit <br> stand. | Repeat (timings) and find average. |
| D | Time taken too short/discussion <br> of reaction time related to <br> recorded time. | Use a larger initial amplitude/smaller (non- <br> zero) final displacement. Use longer <br> string/smaller areas of card. |
| E | Two readings of $t$ and $A$ are not <br> enough to verify the suggestion. | Take many readings of $A$ and plot a graph $t \mathrm{v} A$ <br> or of $t$ v 1/A. |

(7 maximum).
No credit for simple 'repeats' or 'using a computer'or digital meters.
Do not allow vague human error in measurements.
Quality of written communication (i.e. spelling, punctuation and grammar).
Capital letters at the beginning of sentences, full stops at the end scores one mark.
Correct spelling and grammar scores one mark. Allow maximum of two errors.
Difficult to read evaluations scores maximum one mark.
16 marks available. Write the mark as a ringed total at the bottom of page 11.

## Results

Question 1

| $\mathrm{x} / \mathrm{m}$ | $\mathrm{d} / \mathrm{m}$ |
| :---: | :---: |
| 0.100 | 0.105 |
| 0.110 | 0.140 |
| 0.140 | 0.247 |
| 0.170 | 0.348 |
| 0.200 | 0.448 |
| 0.230 | 0.550 |
| 0.260 | 0.660 |

Plotting a graph of $d$ against $x$ produces:
Gradient $=3.44$
$y$-intercept $=-0.24$
$Q=0.35 \mathrm{~kg}$
$R=0.122 \mathrm{~kg}$
Mass from top pan balance 120 g

## Question 2

## Results:

$l=15.0 \mathrm{~cm}$
$w=10.0 \mathrm{~cm}$
$A=150 \mathrm{~cm}^{2}$
$t=6.9 \mathrm{~s}$
$l=7.5 \mathrm{~cm}$
$w=10.0 \mathrm{~cm}$
$A=75 \mathrm{~cm}^{2}$
$t=12.9 \mathrm{~s}$

When the area is halved the time is approximately doubled, therefore $t$ is inversely proportional to $A$.

## Summary of shorthand notation which may be used in annotating scripts:

SFP Significant figure penalty
ECF Error carried forward
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line
FO False origin
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
CON contradictory physics not to be credited
$\checkmark \Delta \quad$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark$ A1 Used to show the type of mark awarded for a particular piece of work
$\checkmark$ c Used to show that the raw readings are consistent
$\checkmark$ d Used to show that the raw readings have correct spacing
$\checkmark$ SF Used to show calculated quantities have been given to an appropriate number of significant figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \wedge \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the $x$-direction
$\downarrow \quad$ Scale can be doubled in the $y$-direction

## 2824 Forces, Fields and Energy

Question
Expected Answers
Marks
1 a i Using $F=$ ma gives $P=3 m a$ hence $a=P / 3 m$ ..... 1
ii P/3 ..... 1
iii $1 \quad P / 3 m$ ..... 1
$2 P / 3$ ..... 1
iv $1 \quad \mathrm{P} / 3$ ..... 1
2 2P/3 ..... 1
b i $m u=m v_{1}+m v_{2}$ ..... 1
$1 / 2 m u^{2}=1 / 2 m v_{1}{ }^{2}+1 / 2 m v_{2}{ }^{2}$ ..... 1
ii some details of algebra/substitution to be shown resulting in e.g. ..... 1$u=v_{2}$ and $u^{2}=v_{2}{ }^{2}$c i all momentum is passed to block 2,( block 1 stops); then1
momentum is passed to block 3 (so block 2 does not move)/AW ..... 1
or argument in terms of k.e.
ii block 1 bounces back; and blocks 2 \& 3 move (to right/together)24
Totalb gradient of line at $x$-axis gives acceleration; accept $0.42 \pm 0.04$ (m$\mathrm{s}^{-2}$ )2
or $a=v_{\max } 2 \pi f=0.08 \times 2 \times 3.14 \times 0.83=0.419\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
c $\quad \mathrm{a}=(-)(2 \pi f)^{2} \mathrm{x}$; correct substitution; ..... 2
solution with $\mathrm{a}=0.40$ gives $\mathrm{x}=14.6 \mathrm{~mm}$ or $\mathrm{a}=0.42$ gives $\mathrm{x}=$ ..... 1 ..... 32
15.3 mm
or $\mathrm{v}_{\text {max }}=\mathrm{A} 2 \pi \mathrm{~m} ; \mathrm{A}=0.08 / 2 \mathrm{~m} \times 0.83 ;=15.3 \mathrm{~mm}$
d i negative cosine wave touching x-axis; 2 oscillations; correct scale1
on right hand axis oscillating about 0.6 mJ , amplitude 0.6 mJ23
ii $\quad 1 / 2 \mathrm{mv}_{\max }^{2}=0.0012$; gives $\mathrm{m}=0.375 \mathrm{~kg}$22
Total ..... 12
3 a Force per unit mass (at that point)1
b From Newton $2 / F=m a, a=F / m(=W / m)$ for a freely falling object ..... 1
(without air resistance, etc); the same value as $\mathrm{g}=\mathrm{F} / \mathrm{m}(=\mathrm{W} / \mathrm{m})$ ..... 1
(as measured by a spring balance)1
$v=2 \pi r / T ;=2 \pi \times 3500 \times 10^{3} /(110 \times 60)=3300\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ ..... 2 ..... 2
$\mathrm{M}=\mathrm{v}^{2} \mathrm{r} / \mathrm{G}=3.3^{2} \times 3500 \times 10^{9} / 6.67 \times 10^{-11} ;=5.7 \times 10^{23}(\mathrm{~kg})$ ..... 2
d i $\mathrm{g}=\mathrm{GM} / \mathrm{R}^{2}$ ..... 1ii $\quad 3.7=6.67 \times 10-11 \times 5.7 \times 1023 / R 2$;gives $R=3200(\mathrm{~km})$ to 33002(km)
Question Expected Answers Marks
4 a The charge flows one way/onto capacitor deflecting ammeter one ..... 1
way; ..... 1
at discharge charge flows other way/off capacitor deflectingammeter other way; or equal deflections at equal times from startof process; but in opposite directions or time constants same;currents opposite /AW
b $\mathrm{I}_{0}=6.0 \times 10^{-4} ; \mathrm{V}=\mathrm{I}_{0} \mathrm{R}$ gives $12=6.0 \times 10^{-4} \times \mathrm{R}$ and $\mathrm{R}=2 \times 10^{4}$2
$\Omega$
c i current falls to $1 / \mathrm{e}(0.37)$ of initially chosen value in time constant; ..... 1
indication on graph, e.g. $\mathrm{I}=2.2 \times 10^{-4} \mathrm{~A}$ at 5.0 s for initial current ..... 1$I_{0}$ii $\quad R C=5.0 \mathrm{~s} ;$ so $\mathrm{C}=(5.0 / 2.0) \times 10^{-4}\left(=2.5 \times 10^{-4} \mathrm{~F}\right)$2
d $\mathrm{Q}=\mathrm{CV} ;=12 \times 250 \times 10^{-6}=3.0 \times 10^{-3} \mathrm{C}$ ..... 2
ii $\quad \mathrm{I}_{0} \mathrm{t}=6.0 \times 10^{-4} \times 5.0=3.0 \times 10^{-3} \mathrm{C}$ ..... 1
iii calculate the area under the graph (as $\mathrm{Q}=\mathrm{It}$ ) ..... 1
Total ..... 12
$5 \quad a \quad E=V / d ;=40 \times 10^{3} / 6 \times 10^{-4}=6.7 \times 10^{7} ; \mathrm{N} \mathrm{C}^{-1}$ or $V \mathrm{~m}^{-1}$31one closed loops through primary passing through iron core and1secondary; second line along same path not touching/crossing,
etc.,
ii all magnetic flux (created by primary current) passes through iron1core/ low reluctance path (so links both coils)/AW(magnetic flux $=$ BA and) magnetic flux linkage $=$ BAn ;1
the secondary coil has a different number/many more turns than ..... 1
the primary so flux linkage is differentmax 2iii voltage is only induced across spark gap when the magnetic fluxis changing1
iv 1 the shorter the time the greater the voltage; because $\mathrm{V} \alpha$ rate of ..... 1change of flux linkage1
$2 V_{\mathrm{p}} / V_{\mathrm{s}}=\mathrm{n}_{\mathrm{p}} / \mathrm{n}_{\mathrm{s}}$ (in an ideal transformer); so larger $\mathrm{n}_{\mathrm{s}}$ is relative to ..... 1
$\mathrm{n}_{\mathrm{p}}$ the larger the secondary voltage ..... 9
Total ..... 12
6 a i choose two from: penetrations; ionisation; charge; nature; mass;2speed; monoenergetic v continuous spectrum of energy/speedsome qualification/detail for each2
ii choose two from: source; energy range/ wavelength or frequency ..... 2
range; penetrating power
some qualification/detail for each2
b i $\quad \mathrm{I}=\mathrm{I}_{0} / \mathrm{r}^{2}$ or $\mathrm{I}=\mathrm{kr}^{-2}$ ..... 1
$\mathrm{k}=40$ so $\mathrm{I}=40 /(0.25)^{2}=40 \times 16=640$ ..... 1
ii $1 \quad 1280$ ..... 1$2 \quad 1280=40 / \mathrm{r}^{2} ;$ so $r=\sqrt{ }(40 / 1280)=0.18(\mathrm{~m})$2
Question Expected Answers Marks
7 a internal energy = sum of p.e. + k.e. of molecules ..... 1
no p.e. as no force of attraction ..... 1
mean k.e. of molecules $\alpha$ absolute temperature ..... 1
so internal energy a absolute temperature ..... 1
no internal energy, no temperature/energy cannot be less than ..... 1 ..... 5
zero/AW
b
AB: k.e. /speed increases with temperature; in liquid phase ..... 2
p.e. /separation remains constant or increase very slightly ..... 1
BC: k.e. /speed remains constant as temperature constant ..... 1
p.e./separation increases greatly; as change of phase/state ..... 2
occurs
CD: k.e. /speed increases with temperature; in vapour/gas phase ..... 2
p.e. /separation remains constant ..... 1
internal energy increases throughout ..... 1
max 7 marks
Quality of written communication ..... 4
Total ..... 16

## 2825/01 Cosmology

1 (a) (i) Sun in centre (of solar system)
(a) (ii) any 2 from planets move at different speeds 1 one planet overtakes another 1 planet changes direction compared to stars behind 1

## 2

(b) (i) 1 light-year 1
distance travelled by light (in vacuo) in 1 year. 1
2 astronomical unit 1
(average) distance_of Earth_from Sun_/ (average) radius of Earth's orbit about Sun

1
(b) (ii) all in correct order $\mathrm{pc}, \mathrm{ly}, \mathrm{AU}, \mathrm{m}$

1

## total 8

(a) $\mathrm{F}=\mathrm{GMm} / \mathrm{r}^{2}$ or $\mathrm{FaMm} / \mathrm{r}^{2}$ with all labels 1
(b) (i) central bulge 1
stars on disc extending each side 1
(b) (ii) X approximately $2 / 3$ from centre 1
arrow starting on $X$ and directed towards centre 1
(c) $\quad \mathrm{GMm} / \mathrm{r}^{2}=\mathrm{mv}^{2} / \mathrm{r} /$ accept gravitational force provides
$\mathrm{M}=\mathrm{rxv} \mathrm{v}^{2} / \mathrm{G} \quad 1$
$M=2.6 \times 10^{20} \times\left(230 \times 10^{3}\right)^{2} / 6.67 \times 10^{-11} 1$
$M=2.1 \times 10^{41} \mathrm{~kg} \quad 1$

3 (a) any three from
fusion of protons/ hydrogen nuclei 1
helium nuclei formed 1
energy from loss of mass $/ E=\Delta m c^{2}$ explained 1
detail of p-p reactions 1

## 3

(b) continuous spectrum/all wavelengths
crossed by dark lines/ absorption spectra 1
(c) Ultr-violet

Infra-red 1
Radio 1
(d) (i) $\quad v=7 \times 10^{8} / 200,000 \times 365 \times 24 \times 3600$
$v=1.1 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$
(ii) velocity less than $c$ / ref to diffusion or scattering of photons/ ref to collision of photons with particles

## 1

4 (a) occurs at end of main sequence/ when hydrogen burning ceases
core compresses/ increase in outward pressure/ star expands/ planetary nebular/ density decreases lower surface temperature/ increased luminosity 11
(b) (i) maximum absolute magnitude $=-1$

1
(ii) $\mathrm{m}-\mathrm{M}=5 \lg (\mathrm{~d} / 10)$
$7-(-1)=5 \lg (\mathrm{~d} / 10$ 1
$\mathrm{d}=398(\mathrm{pc})$ 1
(iii) any 2 from
absolute magnitude assumes all stars at $10 \mathrm{pc} \quad 1$
stars are at a range of distances/ intensity proportional to $1 / \mathrm{r}^{2}$ 1
apparent magnitude is star's magnitude viewed from Earth

1

5 (a) any 5 from
very high temperature 1
expansion/ inflation 1
electrons formed 1
leptons/ positrons/ neutrinos/ quarks formed 1
reference to forces separating 1
protons/ neutrons/ hadrons formed 1
helium nuclei formed 1
extra detail 1
(b) (i) all points correct 1
(ii) smooth curve each side 1
continuous curve at peak 1
correct frequency read from graph for max intensity 1
(iii) $3 \times 10^{8}=\lambda_{p} \times$ (frequency from b.ii) 1
calculation of $\lambda_{p} \quad 1$
(iv) correct calculation of T (ecf from b.ii) 1
(c) any 2 from
gamma radiation from Big Bang red shifted to microwave
$\mathrm{T}=2.7 \mathrm{~K}(3 \mathrm{~K})$ predicted by big bang theory/
measurements provide evidence for big bang theory
measurements contradicted steady state theory 1
2

6 (a) any 3 from
light from galaxies (accept stars) shows red-shift 1
galaxies (stars) moving away/ Universe expanding 1
red-shift proportional to distance (from Earth)/ v=H x d 1
distances to (Cepeid variable) stars measured 1
3
(b) expansion may continue forever (open universe)
universe may collapse back (closed universe)
expansion may continue to a limit (flat universe)
Any 2 of these alternatives
Third alternative 1
Consistently correct reference to critical density compared to density of open, closed or flat Universe 1

3

7 (a) 1. one where Newton's $1^{\text {st }}$ law is obeyed/moving at constant velocity (reject speed)
2. (measured) time interval longer/ ate of clocks is decreased

1
when time observed from outside a moving reference frame
1
(b) (i) graph shows rest mass when $v=0$
correct shape curve ( increasing gradient )
asymptote to $\mathrm{v}=\mathrm{c}$
1
(ii) either
at low energies, more ke gives increase in speed 1 at high energies, more ke gives increase in mass 1

```
or
interpretation of \(m=m_{0} /\left(1-v^{2} / c^{2}\right)^{1 / 2}\)
at \(v=0 \mathrm{~m}=\mathrm{m}_{0}\)1
```

at $v=c \quad m=\infty$1
(c) any 5 from rocket, lamp and observer 1
rocket accelerates 1
lamp flashes 1
time between flashes measured 1
time between flashes increases for lamp behind (ora) 1
principle of equivalence 1
light red-shifted when moving in opposite direction to gravitational field/rate of clocks is less in gravitational field

## 2825/02 Health Physics

(a) shape
with min. 1 to 3 kHz
frequency range from $20-30 \mathrm{~Hz}$ to $16-20 \mathrm{kHz}$
min . intensity at $10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
(b) (i) I.L. $=10 \lg \mathrm{I} / \mathrm{I}_{\mathrm{o}}$
$20=10 \lg \mathrm{I} / 10^{-12}$
$I_{1}=10^{-10} \mathrm{~W} \mathrm{~m}^{-2}$
$I_{2}=10^{-4} \mathrm{~W} \mathrm{~m}^{-2}$
$10^{-4} / 10^{-10}=10^{6} \quad$ ( larger by a factor of $\left.\ldots ..\right)$
(ii) Intensity is the power of sound (normal) per unit area /I = P/A
loudness is a subjective response to intensity or response varies from individual to individual
(iii) No or Yes + a comment that is relevant to a max. of 2 eg You can't tell as loudness is subjective
/ differs from person to person
It is probably closer to $4 x$ than to $10^{6}$.
A doubling in intensity level does not correspond to a doubling in loudness
the loudness we hear depends upon the frequency of the sound
intensity level isn't the same as loudness /
intensity level correlates to loudness

2
(a) (i) short sight / myopia
(ii) effect on power (1) effect on rays (1) detail mark (1) e.g. effect on power. cornea is less curved / lens too strong / eyeball too long / parallel light brought to a focus in front of the retina
the effect on rays: so power of eye is less / focal length increased / light refracted less
detail: which is equivalent to adding negative lens / or so less refraction needed to focus image on retina / cornea does most of the refracting

(a) (i) or astigmatism
(ii) uneven curvature of the cornea in different planes

Make surface spherical e.g. same curvature
Detail: horizontal and vertical lines both appear clear at the same time
(b) any relevant response up to a maximum of 8 e.g.
lasers cause heating effect in cell tissue
water content in cell / tissue is vaporised / heated
cell shrivels and dies
lasers cauterise blood vessels / seal vessels as they cut
so less blood during surgery / cleaner to view in surgery
sterile cutting as no direct contact
much finer cut / more accurate cut
shorter recovery time
less scarring
key-hole surgery / non-invasive

3 any relevant response to a maximum of 8 e.g.
atoms with unequal numbers of protons and neutrons spin
act as tiny magnets
align in external magnetic field
and precess / wobble
rf radiation is sent in
at resonant frequency of precession / at Larmor frequency
r.f. radiation is emitted
(as atoms return to the unexcited state)
relaxation times are measured / relaxation times identify different atoms

## One detail mark for eg

hydrogen is most commonly used / different relaxation times in
fat and water / value for size of magnetic field > 1 T
/ gradient in magnetic field needed
Agreement with student's comment
(no because) radio frequency radiation is sent into the patient
(but yes because the radiation sent in is) not ionising, so is safer
(no because) less safe if you have metal implants / pacemaker due to strong magnetic field

4 (a) $I=I_{0} e^{-\mu x}$
$\mu$ is the (total) linear attenuation / absorption coefficient
(b) (i) table completed
(ii) all points plotted correctly

4 points plotted correctly
line of best fit
(iii) gradient substitution e.g. $-(22-5) / 2.6 \times 10^{-2}$
answer $=-654 \mathrm{~m}^{-1}(-600--800)$
(iv) $\operatorname{Ln} I_{0}=22 \quad(+/-1)$ ecf
$3.6 \times 10^{9}$
(v) $\ln (0.25)=-654 x \quad$ (substitution of $\mu \operatorname{ecf}(i i i)$ )
$x=2.1 \times 10^{-3} \mathrm{~m} \quad$ ecf (iii)
5 (a) (i) $\mathrm{H}=\mathrm{Q} \times \mathrm{D}$, quality factor x absorbed dose / takes into account the type of radiation
(ii) $\quad D=$ dose equivalent / quality factor

Gy or $\mathrm{J} \mathrm{kg}^{-1}$
(iii) $1.6 \times 1.5 \times 10^{-3}$
$=2.4 \times 10^{-3} \mathrm{~J}$
(b) (i) it damages / changes / alters / ionises DNA
forms free radicals (from water molecules which go on to damage
cell walls / cause chemical changes within cell
/ by producing hydrogen peroxide
Causing cancer / tumour / mutation / etc.
(ii) stochastic effects are random
stochastic do not have a threshold above which they occur

6 (a) arm: $6.1 \quad \mathrm{~L}<\mathrm{E}$
leg $6.2 \quad L>E$
$\mathrm{MA}<1.0$ for arm and MA> 1.0 for leg
(b) (i) moment $=$ force $\times$ perpendicular distance to line of action of the force
$55 \times 0.25 \sin 60$
$=11.9$
N m (1)
(ii) $12=\mathrm{E} \times 0.02 \cos 60$

1190 N
(iii) $\mathrm{MA}=$ load $/$ effort
$=55 / 1190=0.046$
(iv) as leg becomes almost horizontal E increases (from zero)
either ref. to clockwise moment increasing due to increasing distance of $L$ from $P$
perpendicular distance of $E$ to pivot decreases
$E$ increases from zero, when leg is vertical $E$ is zero
/ as leg approaches horizontal, E increases towards infinity
/ becomes very large
or numerical reasoning e.g.
$\mathrm{L} \times 25 \sin 60=\mathrm{E} \times 2 \cos 60$
$\mathrm{E}=\mathrm{L} \times 12.5 \times \tan 60$
so when $\theta=0 \mathrm{E}=0$
when $\theta=90 \quad \mathrm{E}=$ infinity

## 2825/03 Materials

1
(a) (single-)crystal - not crystalline amorphous.
(b) (i) impurity atom / vacancy / missing atom / substitution defect / interstitial defect.
(ii) atoms occupy the least possible space or wtte / diagram of a plane with 6 atoms surrounding any atom;
permanent deformation (of a material) after removal of deforming. (1)
force / stress
(c) (i) a dislocation.
(ii) incomplete plane of atoms moved to the right;
(1)
new bonding of atoms correct.
(iii) The dislocation allows bonds to break / atoms to move one by one; (1) Without the dislocation adjacent planes could only slip (relative to each other) if many bonds broke at the same time (requiring a much bigger force).(1) [2]
(d) suitable example: e.g. copper wire / cable, process: extrusion / stretching car body;
pressing.
[Total: 12]
(a) (i) Incident light power $=0.1 \times 3.0=0.30 \mathrm{~W}$;

Power per unit area $=0.30 / 4 \pi 0.10^{2}=0.30 / 0.126$
( $=2.39 \mathrm{~W} \mathrm{~m}^{-2}$ )
(ii) power $=2.39 \times 8.0 \times 10^{-5}=1.90 \times 10^{-4} \mathrm{~W}$
(b) (i) Circuit with battery, ammeter and LDR;

Voltmeter correctly placed;
(ii) Suitable suggestion e.g between bulb and LDR, tube with
dark interior surface;
Measure to avoid back-scattered light from reaching LDR;
Vary and measure distance of bulb from face of LDR;using method based on (a) above;(1)
(In LDR circuit) read p.d. from voltmeter and current from ammeter;(1)
Calculate resistance using p.d./ current;
Obtain several sets of readings over a range of distances;
Change to ammeter of greater sensitivity if reading low.
Graph of power against resistance / numerical method to
(1) $\max [7]$
determine relationship
(iii) As power of light increases
resistance of LDR falls;
a greater number of photons per unit time fall on the LDR;
and more electrons are promoted from valence to conduction band.(1)

3 (a) + signs on right-hand side, - signs left-hand side;
electrons / charge carriers moving in magnetic field experience force;
direction of force is given by Fleming's left-hand rule.
(b) (i) $\quad v=I / n A e-n o t I=n A v e$

$$
\begin{align*}
& =0.35 /\left(1.1 \times 10^{25} \times 6 \times 10^{-3} \times 0.25 \times 10^{-3} \times 1.6 \times 10^{-19}\right)  \tag{1}\\
& \left(=0.133 \mathrm{~m} \mathrm{~s}^{-1}\right) \tag{1}
\end{align*}
$$

(ii) $\mathrm{V}_{\mathrm{H}}=\mathrm{Bvd} / \mathrm{B}=\mathrm{V}_{\mathrm{H}} / \mathrm{vd}$ $B=0.080 \times 10^{-3} /\left(0.133 \times 6.0 \times 10^{-3}\right)=0.100 \mathrm{~T}$
(c) Hall voltage is (much) larger (for semiconductor than for metal); and can be read more accurately;
Sensible attempt at numerical comparison with metal;
Semiconductor has (much) lower $\mathrm{n} /$ charge carrier concentration;
so that v / drift velocity is (much) larger;
(1) max
[Total: 11]

4 (a) (i) A region (in a ferromagnetic material / iron); where dipoles / atomic magnets are aligned.
(ii) The temperature at which a magnet / magnetic material loses its magnetism; because dipoles / atomic magnets lose their alignment.
(b) Core material must have high Curie temperature (to maintain magnetism);(1)

Core made of soft iron / ferrite / metallic glass;
so that hysteresis loop has small area;
Small area associated with low heat loss;
Core needs high resistance / resistivity;
so is laminated / made of metallic glass / ferrite;
to minimise heat loss due to eddy currents;
Core material needs high saturation flux density;
$P$ and $S$ windings need to be closely wound to maximise flux linkage;
Core material must have high melting point.
(1) $\max$
[Total: 12]
(a) (i) $\mathrm{E}=\mathrm{hc} / \lambda$

$$
\begin{equation*}
=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 950 \times 10^{-9}=2.09 \times 10^{-19} \mathrm{~J} \tag{1}
\end{equation*}
$$

(ii) $\mathrm{eV}=2.09 \times 10^{-19}$
$V=2.09 \times 10^{-19} / 1.6 \times 10^{-19}=1.31 \mathrm{~V}$
(b) A photon of the infra-red has insufficient energy;
to promote an electron from the valence band to the conduction band
of the glass;
so is not absorbed by the glass (and passes through the glass);
In a metal there are many close electron energy levels;
in the conduction band;
An infra-red photon has sufficient energy to promote an electron from one (of these) energy level to another so is absorbed (and does not (1) max pass through the metal).
(c) Gamma rays will have lower frequency / longer wavelength / emerge as X -ray.
(a) (i) Absorption by (impurity) metal atoms;

Absorption by hydroxyl ions.
Absorption by bonds between glass atoms.
(1) $\max$
(ii) Rayleigh scattering
(b) Light slows down;
(c) (i) Sketch showing distorted pulse, rounded and stretched i.e. time of pulse longer. [1]
(ii) Infra-red from an LED has a (small) range of frequencies;

Different frequencies travel at different speeds and have different
transit times.
Light from LED enters fibre at different angles / along
different I/ nAe paths;
Rays follow different paths with different transit times.

## 2825/04 Nuclear and Particle Physics

| Question | Expected Answers | Marks |
| :---: | :---: | :---: |
| 1 (a)(i) | ```number of nucleons = 27 so mass of nucleus = 27 }\times1.67\times1\mp@subsup{0}{}{-27}=4.5(1)\times1\mp@subsup{0}{}{-26}\textrm{kg``` | 1 [1] |
| (ii) | volume of nucleus $V=4 / 3 \pi r^{3}$ $\begin{aligned} & r=27^{1 / 3} \times 1.40 \times 10^{-15}\left(=4.20 \times 10^{-15} \mathrm{~m}\right) \\ & V=4 / 3 \pi\left(4.20 \times 10^{-15}\right)^{3}=3.1(0) \times 10^{-43} \mathrm{~m}^{3} \end{aligned}$ <br> alternative answer $\begin{aligned} V & =4 / 3 \pi\left(A^{1 / 3} r_{0}\right)^{3}=4 / 3 \pi A r_{0}{ }^{3} \\ & =4 / 3 \pi \times 27 \times\left(1.40 \times 10^{-15}\right)^{3}=3.1(0) \times 10^{-43} \mathrm{~m}^{3} \end{aligned}$ <br> (at least 2 sf ) | $\begin{array}{ll} 1 & \\ 1 & \\ 1 & {[3]} \end{array}$ |
| (iii) | $\text { density of nucleus }=\frac{4.51}{3.10} \times \frac{-10^{-26}}{10^{-43}}=1.45 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$ <br> must show substitution and calculated answer (not just $1.5 \times 10^{17}$ ) | 1 [1] |
| (b) | either density of gold nucleus $=1.45 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3} / 1.5 \times 10^{17}$ or density of gold nucleus $=$ density of aluminium nucleus; because spacing of nucleons is same inside both nuclei; proton and neutron have approx. same mass (so proportions of neutrons and protons make no difference); <br> the volume of a nucleus is proportional to number of nucleons; | $\begin{equation*} 1 \tag{1} \end{equation*}$ |
| (c) (i) | $\begin{aligned} & \frac{197}{27 \times} \times\left(\frac{-(1.67-}{} \times \frac{-10-27}{1.67} \times \frac{\left.10^{-27}\right)}{0}\right)=7.3 \\ & \frac{19.3}{2.70 \times\left(10^{3}\right)}=7.1 \text {; } \\ & \text { either have assumed that mass of atom }=\text { mass of nucleus } \\ & \text { or } \quad \text { have assumed that electrons (in atom) have negligible mass; } \end{aligned}$ | 1 $1$ <br> [2] |
| (ii) | (average) space occupied by gold atom $=/ \sim$ (average) space occupied by aluminium atom; <br> allow: volume of gold atom $=/ \sim$ volume of aluminium atom not 'size' <br> do not allow mass of atom(s) proportional to density | 1 <br> [1] <br> 10 |


| Question | Expected Answers | Marks |
| :---: | :---: | :---: |
| 2 (a) | in nuclear fission, nucleus splits into two parts / nuclei / fragments (of comparable / roughly equal size); <br> in radioactive decay $\alpha$ or $\beta$ or photon is emitted; <br> nuclear fission is triggered / induced / caused by an (incoming) neutron; (1) <br> radioactive decay is spontaneous; | 2 [2] |
| (b) (i) | sum of nucleon numbers / masses of products is constant / equal to 236; so for every small nucleus there is a (corresponding) large nucleus or AW; | $\begin{array}{ll} 1 & \\ 1 & {[2]} \end{array}$ |
| (ii) | proton number $=46$ nucleon number $=118$; | 1 [1] |
| (c) | proton number $=39$ nucleon number $=94$; | 1 [1] |
| (d) (i) | $\begin{aligned} & { }_{53}^{140} \mathrm{l} \rightarrow{ }_{0}^{1} \mathrm{n}+{ }_{55}^{139} \mathrm{l} \\ & { }_{53}^{140} \mathrm{l} \\ & 53 \end{aligned}{ }_{-1}^{0} \mathrm{e}+{ }_{54}^{140} \mathrm{xe}+\bar{v}$ <br> omits $\bar{v}$ gets $1 / 2$ <br> $v$ instead of $\bar{v}$ gets $2 / 2$ | $\begin{array}{ll} 1 & \\ 2 & {[3]} \end{array}$ |
| (ii) | idea that fission products have too many neutrons /neutron rich (to be stable) or AW; <br> idea that $\beta^{-}$emission reduces number of neutrons / increases number of protons / reduces neutron/proton ratio; | $\begin{array}{ll} 1 & \\ 1 & {[2]} \end{array}$ |
| (iii) | ```neutron decay: reactant mass: 139.9019 product mass: 138.8969 + 1.0087 = 139.9056u product mass / energy > reactant mass / energy, so reaction cannot occur beta decay: reactant mass: 139.9019 product mass: 139.8919 + 0.0006 = 139.8925u product mass / energy < reactant mass / energy, so reaction can occur``` | 1 1 |
| 3 (a)(i) | $\begin{aligned} & E_{\mathrm{p}}=\frac{\left(1.6-\times-10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12} \times 2.0 \times 10^{-15}-} \\ &=1.15 \times 10^{-13} \mathrm{~J} \\ & \text { allow } 1.1 \times 10^{-13} \text { or } 1.2 \times 10^{-13} \text { but not } 1 \times 10^{-13} \end{aligned}$ | 1 <br> 1 [2] |


| (ii) | $E_{\mathrm{p}}=2 E_{\mathrm{k}}$ | 1 [1] |
| :---: | :---: | :---: |
| (iii) | $\begin{aligned} & E_{\mathrm{k}}=1.15-x-10^{-13} \quad\left(=5.75 \times 10^{-14}\right) \mathrm{J} \\ & \text { subs. } \\ & 5.75 \times 10^{-14}=2.1 \times 10^{-23} \mathrm{~T} \quad T=2.7 \times 10^{9} \mathrm{~K} \end{aligned}$ ans. <br> allow ecf form (a)(ii) eg $E_{K}=E_{\mathrm{P}}$ gives $T=5.48 \times 10^{9}$ | $\begin{array}{ll} \hline 1 & \\ 1 & {[2]} \end{array}$ |
| (iv) | either ${ }_{1}^{1} \mathrm{H}$ nuclei have a range of speeds / energies or $5.75 \times 10^{-14} \mathrm{~J}$ is only an average k.e; <br> (1) <br> some of them have enough energy to fuse; <br> (1) <br> quantum tunnelling can occur; <br> (1) | 2 [2] |
| (b) | either ${ }_{1}^{1} \mathrm{H}$ consists of a single proton, so no binding has occurred or only one nucleon / proton so no further splitting possible; | 1 [1] |
| (c)(i) | $4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{0} \mathrm{e}+2 \mathrm{v}$ <br> omits neutrinos altogether 0/1 allow 1 neutrino instead of 2 allow either neutrino or anti-neutrino | 1 [1] |
| (ii) | binding energy of ${ }_{2}^{4} \mathrm{He}$ nucleus $=4 \times 7.2 \mathrm{MeV}(=28.8 \mathrm{MeV})$ so energy released $=28.8 \times 10^{6} \times 1.6 \times 10^{-19}=4.61 \times 10^{-12} \mathrm{~J}$ | $\begin{array}{ll} \hline 1 & \\ 1 & {[2]} \end{array}$ |
| 4 (a)(i) | for proton in orbit, $\underline{\underline{m}-\underline{v}^{2}}=B Q v$ equation $\begin{aligned} \begin{aligned} \text { so } v= & \underline{B-Q} \underline{R}= \\ \text { subs. } & \underline{1.2 \times-1.6-x-10-19} \underline{x}-0.500 \\ & m \\ & m .67 \times 10^{-27} \\ & \\ & 5.75 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned} \end{aligned}$ <br> ans. <br> accept $5.7 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ | $\begin{array}{ll} 1 & \\ 1 & \\ 1 & {[3]} \end{array}$ |
| (ii) | $\begin{aligned} \text { k.e. of proton }= & 1 / 2 m v^{2} \\ = & 1 / 2 \times 1.67 \times 10^{-27} \times\left(5.75 \times 10^{7}\right)^{2}\left(=2.76 \times 10^{-12} \mathrm{~J}\right) \\ 1 \mathrm{MeV}= & 1.6 \times 10^{-19} \times 10^{6}=1.6 \times 10^{-13} \mathrm{~J} \\ \text { so k.e. of proton }= & \underline{2.76-x-10^{-12}}=17.3 \mathrm{MeV} \quad \text { subs. and calculated } \\ \text { answer } & 1.60 \times 10^{-13} \end{aligned}$ | $\begin{array}{ll} \hline 1 & \\ 1 & \\ 1 & {[3]} \end{array}$ |




## 2825/05 Telecommunications

## Question 1

Expected Answers
Marks
(a) (i) Amplitude modulation
(ii) Transmission frequency $=1 /$ carrier period 1 $=1 / 2.5 \mu \mathrm{~s}$
$=400 \mathrm{kHz} \quad 1$
(iii) modulating frequency $=1 / 25 \mu \mathrm{~s} \quad 10 \mathrm{kHz} \quad 1$
(iv) Medium frequency (or medium wave) waveband (do not accept MF) 1
(b) Domestic radios which can tune in to the MW are designed to pick up AM Such AM receivers only allow a bandwidth of a few kHz per station The bandwidth of 80 kHz is way beyond this capability or
Domestic radios on the MW are designed to output audio sounds only
The 40 kHz is way beyond normal human hearing range 1
(c) (i)


any vertical line
three vertical lines as shown ..... 1
frequencies correctly marked ..... 1
(ii) The bandwidth is the range of frequencies present in a signal 1
(iii) Bandwidth $=440-360=80 \mathrm{kHz}$.1

## Question $2 \quad$ Expected Answers <br> Marks

(a) (i) LDR = Light Dependent Resistor1
(ii) As the light intensity increases the resistance decreases 1
(b) (i) 1 Current in LDR $=V / R_{\text {total }}$
$=9 /(230+270) \quad 1$
$=0.018 \mathrm{~A} \quad 1$
2 Voltage at $\mathrm{A}=0.018 \times 270$
$=4.9 \mathrm{~V}$
(ii) Voltage at B $=4.9 \mathrm{~V} \quad 1$
(iii) The motor will not turn 1

Because the comparator output is zero (as both inputs are equal) 1
(c ) If torch $X$ is switched off then voltage at $A$ will fall
because resistance of LDR $X$ has increased to consume a greater fraction of pd 1
so op-amp comparator saturates positively because $\mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{A}} \quad 1$
and motor turns (at full speed) 1
(d) (i) If both torches are off then both LDRs see same light intensity and thus have the same resistance so the voltages at $A$ and $B$ are again equal. And the motor does not turn
(ii) Torch X on and Y off causes the motor to turn the other way 1
(e) (i) It is almost impossible to have the two light intensities equal Hence one input will always be slightly bigger than another
Because op-amp has huge open loop gain
Extremely difficult to arrange the comparator output to be zero
Because both input voltages must be equal to within microvolts
Given tolerance of fixed resistors it is unlikely they are equal
So the comparator is always in saturation one way or the other Motor turns at full speed so it can never be made to slow down gradually

> ( any three separate points )
(ii) Any reasonable explanation of stability caused by negative feedback

Negative feedback reduces the overall voltage gain of an amplifier This allows a much greater range of input voltages before saturation So the motor can be made to run at non-saturated voltages i.e. slower

## Question 3

(a) (i) Resistance of cable $R=\rho L / A$

$$
\begin{aligned}
& =1.8 \times 10^{-8} \times 2 \times 125 / 0.40 \times 10^{-6} \\
& =11.25 \Omega
\end{aligned}
$$

(ii) Voltmeter $V_{2}=[4.8 /(4.8+11.25)] \times 24$ 1

$$
=\quad 7.2 \mathrm{~V}
$$

(b) (i) Current in cable $=24 /(11.25+4.8)=1.5 \mathrm{~A}$

Power input to cable $=24 \times 24 /(11.25+4.8) \quad 1$

$$
=36 \mathrm{~W}
$$

(ii) Power output from cable $=7.2^{2} / 4.8$

$$
\begin{equation*}
=\quad 10.8 \mathrm{~W} \tag{1}
\end{equation*}
$$

(iii) Attenuation in cable $=10 \log P_{1} / P_{2}$

$$
\begin{aligned}
& =10 \times \log (10.8 / 36) \\
& =\quad-5.2 \mathrm{~dB}
\end{aligned}
$$

Attenuation per kilometre $=5.2 / 0.125$

$$
=42 \mathrm{~dB} \mathrm{~km}^{-1}
$$

$$
1
$$

| Question 4 | Expected Answers | Marks |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | aerial |  | converts electromagnetic waves into small currents |


| Question 5 | Expected Answers | Marks |
| :--- | :--- | :--- |

(a) (i) Multiplexing is the process of allowing several users to share the same channel 1

Multiplexing is important because it reduces the cost per user
(ii) FDM This allocates to each user a fixed carrier / region of frequency space 1 in which they can transmit at any time
TDM This allocates to each user a time slot in which to send a sample 1 before their next time slot appears other samples are sent 1
(b) (i) Maximum frequency of analogue signal <250 Hz (accept 250 ) 1 because sampling frequency $(500 \mathrm{~Hz})$ must be at least twice analogue frequency 1
(ii) Time between each sample $=1 / 500 \quad=2 \mathrm{~ms}$

Duration of each sample $=4 \times 2.5 \quad 10 \mu \mathrm{~s}$
Maximum number $=2000 \mu \mathrm{~s} / 10 \mu \mathrm{~s}$
$=200$
1
(iii)

Signal A
Evidence of TDM


Signal B

(iv) frequency of signal B $=1 / 8 \mathrm{~ms}$

$$
=125 \mathrm{~Hz}
$$

## 2825 Common Question

(a) (i) 1 Area $=\left(4 \pi R^{2}\right)=4 \pi \times\left(1.5 \times 10^{11}\right)^{2} \quad\left(=2.8 \times 10^{23} \mathrm{~m}^{2}\right)$

2 Power emitted $=1400 \times 2.8 \times 10^{23}\left(=4.0 \times 10^{26} \mathrm{~W}\right) \quad$ Allow ecf if consistent[1]
(ii) rate of conversion of mass to energy $=4.0 \times 10^{26} /\left(3.0 \times 10^{8}\right)^{2} / P / c^{2}$
$=4.4 \times 10^{9} \mathrm{~kg} \mathrm{~s}^{-1}(1)$
(b) (i) The Earth's atmosphere/ionosphere absorbs/reflects/scatters solar energy.
(ii) The distance travelled through the atmosphere increases as distance from the equator increases. Accept 'tilt factor.'
(c) (i) Power input $=0.080 \times 750=60 \mathrm{~W}$
(ii) Power generated $=0.27 \times 17=4.6 \mathrm{~W}$
(iii) Efficiency $=($ power generated $/$ power input $) \times 100$
$=(4.6 / 60) \times 100=7.7 \% \quad$ (allow e.c.f.)
(iv) Power to raise water $=0.35 \times 4.6=1.6 \mathrm{~W} \quad$ (allow e.c.f.)

Mass of water raised per hour $=0.50 \times 1000=500 \mathrm{~kg}$
Mass of water raised per second $=500 / 3600=0.14 \mathrm{~kg}$
Maximum height raised $=(\Delta \mathrm{E} / \mathrm{mg})=1.6 /(0.14 \times 9.81)$
$=1.2 \mathrm{~m}$
(Allow ecf from wrong mass)
(d) (i) $\Delta Q=m c \Delta \theta(1)$
$=0.50 \times 4200 \times 75=1.57 \times 10^{5} \mathrm{~J}$
Time to heat water $=1.57 \times 10^{5} / 80=1970 \mathrm{~s}$
(ii) Takes too long
The power of a conventional mains electric kettle is much greater than the power of the panel;
Electric kettles boil a much greater mass of water in a much shorter time;(1)
To boil water in as short a time as an electric kettle, a very large area of solar panel would be needed;

Time required is so long that rate of heat loss to the surroundings may be nearly as high as the rate of heating;
The cost of a very large panel would make it an uneconomic proposition. (1)
Maximum varies with latitude/time of day/season
(1) $\max [2]$

## 2826/01 Unifying Concepts in Physics

1
(a) (i) at highest point on the graph (1)
(ii) mass is less (1)
less mass gives higher acceleration (for the same force)
(iii) rocket runs out of fuel (so suddenly no upward force)
OR because fuel burns OR correct use of $F=m a$
(i) weight
air resistance / drag
(1) $[2] 6$
(b) (i) P at position shown on sketch graph
(1)
$R$ showing range of constant velocity
(ii) recognises the need to find the area beneath the acceleration time graph (1)
$45 \pm 5$ small squares
1 small square $=0.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ so maximum velocity in range $16-22 \mathrm{~m} \mathrm{~s}^{-1}$ (1) [3] 5
(c) first section
second section still increasing
constant slope at end to zero height
(1) [2] 3
[Total : 14]
2 (a) There is no (intermolecular) attraction between molecules/atoms in an ideal gas
so molecules cannot have (internal) potential energy
(1)
[2] 2
(b) (i) most common speed $=750 \mathrm{~m} \mathrm{~s}^{-1} \pm 50 \mathrm{~m} \mathrm{~s}^{-1}$
twice the most common speed $=1500 \mathrm{~m} \mathrm{~s}^{-1}$
area under graph above this speed $=8 \pm 1$ small square
in percentage terms this is $4 \% \pm 0.5 \%$
(ii) e.g. (chemical) reaction, diffusion, evaporation, escape velocity ONE required (1) [1] 4
(c) (i) peak to the right
(ii) peak to the left
lower peak in (i) and higher peak in (ii)
area in both (i) and (ii) to be the same
(iii) same
(iv) recognises that the percentages do not change

3 (a) density incorrect OR the total mass is (far) too small
density is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$
so mass $=4.0 \times 1.0 \times 0.5 \times 1000=2000 \mathrm{~kg}$
[3] 3
(b) nonsensical number of molecules OR figures should be multiplied $3 \times 6.02 \times 10^{23}=18.06 \times 10^{23}$
(c) temperature is in Celsius OR negative pressure is impossible
$p=2 \times 8.31 \times 253 / 2.5 \times 10^{-3}$
$=1.68 \times 10^{6} \mathrm{~Pa}$
[3] 3
[Total: 8]

4 (a) area of estuary $=50 \times 10^{6} \mathrm{~m}^{2}$
volume of water $=500 \times 10^{6} \mathrm{~m}^{3}$
mass of water $=500 \times 10^{6} \mathrm{~m}^{3} \times 1030 \mathrm{~kg} \mathrm{~m}^{-3}=5.1(5) \times 10^{11} \mathrm{~kg}$
average height of water $=5 \mathrm{~m}$
p.e. $=m g h=5.15 \times 10^{11} \times 9.81 \times 5=2.5(3) \times 10^{13} \mathrm{~J}$
[4] 4
(b) volume of water $=\pi \times 10^{2} \times 3=942 \mathrm{~m}^{3}$
mass of water $=942 \times 1030=9.70 \times 10^{5} \mathrm{~kg}$
kinetic energy $=1 / 2 \mathrm{mv}^{2}$ and knows what to substitute
$=0.5 \times 9.7 \times 10^{5} \times 3^{2}=4.4 \times 10^{6}(\mathrm{~J})$
[4] 4

| (c) | Advantages | Disadvantages |
| :---: | :---: | :---: |
| Barrage | e.g. <br> no fossil fuel needed huge power output good pressure head of water reliable <br> 2 required (1) mark each | e.g. <br> shipping blocked ecological problems silting up of estuary sewage build up power not necessarily available when it is required 2 required (1) mark each |
| Tidal stream | e.g. <br> open to shipping <br> 'free power' <br> no ecological effect <br> plenty of places where it can be used <br> 2 required (1) mark each | e.g. <br> much less power output than barrage building costs high slow rate of water flow <br> 2 required (1) mark each |

Candidates are told not to use the same comment twice in the same column, but apart from this many of the comments are transferable
$4 \times(2) \quad[8] 8$
[Total : 16]
5 (a) alternating current changes direction (of movement of electrons) many times per second direct current (has electrons) always moving in the same direction
to induce an e.m.f. it is necessary for magnetic field to be cut by a conductor the rate of cutting (linking) of the field is proportional to the induced e.m.f

E = magnetic flux cut / time
$\max 3$
using high e.m.fs / voltages means that, for a given power
the current can be smaller
since $I^{2} R$ is the power wasted in the cables
less power is wasted with lower current
the supply cables can be thinner
(1) $\max 3$
transformers will only work with a.c.
by adjusting the number of turns the output e.m.f. can be determined
for safety low voltage must be used in houses
transformers can step up or step down
they are very reliable / no moving parts
other valid point
(1) $\max 3$
overall maximum [8] (out of 10)
[8] 8
(b) only one of cheapness, no digging, saves time etc
insulation around cables not required / insulation is the air
no cooling required
2 required 1 mark each
[2] 2
[Total: 10]

## 2826/03 Experimental Skills 2 Practical Examination

## Question 1

| (b) (iv) | Readings <br> Write the number of readings as a ringed total by the results table. 6 sets of readings scores three marks. One or more voltage readings outside the range loses one mark. 5 sets two marks. 4 sets one mark. If minor help has been given (e.g. voltmeter in series), then -1. Excessive help (i.e. circuit constructed for candidate) given, then -2 . <br> Please indicate when help has been given to a candidate by writing SR at the top of the front page of the candidate's script. Also, please indicate the type of help that has been given by writing a brief comment by the table of results. | 3/2/1/0 |
| :---: | :---: | :---: |
| (b) (iv) | Check a value for $\lg (P / W)$, and a value for $\lg \left(\left(R-R_{0}\right) / \Omega\right)$. Underline checked values and $\checkmark$ if correct, one mark for each. If incorrect then write in correct value. Allow one mark out of two if In values are used. Allow small rounding errors. | 2/1/0 |
| (b) (iv) | Quality of results <br> Judge by scatter of points about line of best fit. 5 good trend plots needed, within 1 square of your best line (or $1 / 2$ sq. on $1 / 2$ page). <br> This mark cannot be scored if log values have been miscalculated (but accept In values). | 1 |
| (b) (iv) | Column headings <br> There must be some distinguishing mark between the quantity and its unit. E.g. $\mathrm{V} / \mathrm{V}, \mathrm{V}(\mathrm{V})$, V in volts, are OK , but not $(\mathrm{V}) \mathrm{V}, \mathrm{V}_{\mathrm{V}}$, or just "volts" | 1 |
| (b) (iv) | Consistency of raw readings <br> Applies to $V$ and I only. One mark for each. All raw readings must be given to 1,2 or 3 d.p. Trailing zeros in / lose this mark, but allow trailing zeros in $V$. Indicate using $\checkmark_{C}$ at the foot of the column if correct. | 2/1/0 |
| (b) (v) | Largest percentage uncertainty in I One mark for using the smallest value of $l$. One mark for sensible $\Delta I$ ( 0.001 A to 0.05 A ). $\Delta I$ must be consistent with d.p. of readings. This will depend on type of meter used. One mark for correct ratio idea and ' $x 100$ ' | 3/2/1/0 |
| (c) (i) | Axes. <br> Each axis must be labelled with a quantity. Ignore unit. One mark for each axis. <br> Scales much be such that the plotted points occupy at least half the graph grid in both the x and y directions. <br> Do not allow more than 3 large squares between scale markings. <br> Do not allow awkward scales (e.g. 3:10, 6:10, 7:10, 8:10 etc.). | 2/1/0 |


| (c) (i) | Plotting of points. <br> Count the number of plots on the grid and write this value by the line and ring <br> it. Do not allow plots in the margin area. <br> The number of plots must correspond with the number of observations. <br> Do not award this mark if the number of plots is less than the number of observations. <br> Check one suspect plot. Circle this plot. Tick if correct. <br> If incorrect then mark the correct position with a small cross and use an arrow <br> to indicate where the plots should have been. <br> Allow errors up to and including half a small square. <br> Do not allow 'blobs' of diameter greater than $1 / 2$ small square. | 1 |
| :---: | :---: | :---: |
| (c) (i) | Line of best fit <br> There must be a reasonable balance of points about the line of best fit. If one of the points is a long way from the trend of the other plots then allow this plot to be ignored when the line is drawn. <br> The mark can be awarded if the line of best fit is 'reasonable' but not quite right. This mark can only be awarded if a straight line has been drawn through a linear trend. Do not allow thick or "hairy" lines. | 1 |
| (c) (ii) | Measurement of gradient. <br> Read-offs must be accurate to half a small square and the ratio must be correct, one mark. <br> Please indicate the vertices of the triangle used by labelling with $\Delta$. <br> The hypotenuse of the triangle must be greater than half the length of the drawn line, one mark. <br> Do not allow a line of thickness greater than $1 / 2$ a small square. | 2/1/0 |
| (c) (ii) | y-intercept <br> If possible, check the read-off. Allow errors up to and including half a small square for two marks. If the error is between half a small square and one small square, then score one mark. <br> If a read-off is not possible, correct substitution from a point on the line into $y$ <br> $=m x+c$ scores two marks. <br> If the point is not on the line, or the answer is not the same as the graph readoff, within $1 / 2$ square (no false origin), then this method can score one mark. <br> A read-off taken from a graph with an x-axis false origin scores zero. <br> A bald intercept with no working/read-off from graph scores zero. | 2/1/0 |
| (d) (i) | $\lg (P)=n \lg \left(R-R_{0}\right)+\lg (k)$. Allow $\ln$ values. | 1 |
| (d) (i) | Value for $n$ (from gradient) | 1 |
| (d) (i) | Value for $k$ (from $10^{v-\text {-ntercept }}$ ) <br> Method of working must be checked. <br> Allow $\mathrm{e}^{\mathrm{y} \text {-intercept }}$ if In values have been used. | 1 |
| (d) (ii) | Comment on suggested relationship. <br> (Log) graph is a straight line, so relationship is valid (or wtte). <br> Do not allow values to be compared by substitution into the equation <br> Do not award this mark if: <br> the relationship is stated to be proportional <br> if $\log$ (or In ) values have not been found. <br> the candidate states that the relationship is invalid, without reasoning statement "relationship is valid" with no explanation. | 1 |


| (e) (ii) | Correct substitution into valid equation | $\mathbf{1}$ |
| :--- | :--- | :--- |
| (e) (ii) | Calculation of $R$ from $P=k\left(R-R_{0}\right)^{n}$, or from equivalent log equation. <br> Allow log( $\left.R-R_{0}\right)$ to be read from the graph directly if axes are suitable <br> Correct working (to be checked) one mark. | $\mathbf{1}$ |
| (e) (ii) | Calculation of $T$ from $T=R T_{o} / R_{0}$. No need to check calculation. <br> $T$ must be between 2500 K and 5500 K. No ecf. | $\mathbf{1}$ |
| (e) (ii) | Correct significant figures for $T$ (2 or 3 s.f.) | $\mathbf{1}$ |

## 28 marks in total

## Question 2

| (b) (ii) | Raw time t for 10 or more oscillations recorded to 1 or 2 d.p. One mark. Calculation of $T(=t / n)$. One mark. <br> Misread stopwatch loses both of these marks. <br> Do not credit the raw timing of a single oscillation | 2/1/0 |
| :---: | :---: | :---: |
| (c) | Justification for number of sf in T i.e. same as $t$ (allow 'raw data' ideas or sensible reference to human reaction time). If $t$ is used in (b) (ii) instead of T (i.e. no calculation done) then do not award this mark. <br> This answer must be consistent with (b) (ii) | 1 |
| (d) | Repeated readings of raw times for second value of T. | 1 |
| (e) | Ratio $\mathrm{T} / \mathrm{h}$ is constant. One mark for ratio idea, or calculation of k's. One mark for conclusion that $\mathrm{T} \propto \mathrm{h}$ which follows from the reasoning (only if k values are within $10 \%$ of each other). If not within $10 \%$, allow T not $\propto \mathrm{h}$, or a sensible discussion. Vague 'T might be $\propto$ to h ' or ' T is not $\propto$ to h ' does not score this second mark. | 2/1/0 |
| (f) | Evaluation of procedure. <br> Relevant points must be underlined and ticked. Some of these might be: [ $\mathrm{P}=$ problem; $\mathrm{S}=$ solution] | 8 |
| 1 | P Two readings not enough to draw conclusions |  |
| 2 | $S$ Take several sets of readings of T and h and plot T against h . |  |
| 3 | P Hard to see beginning/end of oscillation (or human error in timing). Do not credit <br> difficulty in starting watch and oscillation together. |  |
|  | S Use a fiducial marker for timing |  |
| 5 | S Use of motion sensor, light gate, or high speed camera with clock in frame or other <br> Indication of time recording. Explanation of set-up needed. |  |
| 6 | S Count more oscillations, more than used in (b) (ii). |  |
|  | P Oscillations are fast and difficult to count (when h is small). |  |
| 8 | $S$ Use larger values of $h$ / weaker magnets. P7 needed to score this S. |  |
|  | P Pendulum motion of magnet / wobbling up and down |  |
| 9 10 | S Both ends of magnet held carefully at start of oscillation / use small amplitude of swing |  |
|  | P Nearby metal objects could affect oscillations. |  |
| 11 | S Use wooden or plastic clamp stand. |  |
| 12 | P Earth's magnetic field will interfere with experiment. |  |
| 13 | S Try to avoid large values of h. P13 needed to score this S. |  |
| 14 | $S$ Evidence of measurement of $T$ when no magnet on bench. |  |
| 15 16 | P/S Magnet not level / use a thread cradle, or use glue, or other good suggestion |  |
|  | Do not allow repeated readings (already credited in (d)) <br> Do not allow draughts <br> Allow other relevant points (8 maximum). Marks are awarded on the basis of one for each problem and each solution. |  |
|  | SPAG | 2 |
|  | Total | 16 |

Plan Absorption of Solar Energy

| A1 | Experimental set-up i.e. circuit diagram for solar cell, to include voltmeter, ammeter (or joulemeter) and load resistance. | 1 |
| :---: | :---: | :---: |
| A2 | Calculation of power absorbed = VI, or energy = VIt | 1 |
| B1 | Labelled diagram of water container, including thermometer, at a given distance from the bulb. The container should be lagged at the back (allow in text). | 1 |
| B2 | Water container should be blackened (allow in text). | 1 |
| B3 | Measurement of mass, temperature rise, time interval. | 1 |
| B4 | Calculation of power absorbed by water $=\mathrm{mc} \Delta \theta / \mathrm{t}$. Continuous flow methods are acceptable. | 1 |
| C1 | Measurement of areas: exposed area of cell, and exposed area of container, or statement that areas must be the same. | 1 |
| C2 | Measurement of distances from bulb, or statement that distances must be the same. (Hence possible comparison of powers between the two methods). | 1 |
| $\begin{aligned} & \mathrm{D} \\ & \\ & 1 \\ & 2 \\ & 3 \end{aligned}$ | Other factors to be taken into account (up to a maximum of 2 marks), e.g. <br> Capital cost; n.b. solar cells are far more expensive than solar panels. <br> Suitability of local weather e.g. hours of sunshine <br> Solar cell provides electricity and not just hot water | 2/1/0 |
| $\begin{aligned} & \hline \mathrm{E} \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$ | Further details (up to a maximum of 2 marks), e.g. <br> Selection of a suitable load resistance for maximum power output. $\left(\mathrm{R}_{\text {cell }}=\mathrm{R}_{\text {load }}\right)$ <br> At present pricing, neither method gives value for money <br> Evidence of preliminary work <br> Optimum positioning and angle of panels. <br> Some discussion of different wavelengths required for solar cell, solar panel | 2/1/0 |
| R | Evidence of research of material. <br> i.e. at least two detailed references from different sources have been given (i.e chapter and/or page numbers must be given). Allow internet pages to be sourced. <br> Two or more vague references (i.e. no chapter or page reference) score one mark <br> One detailed reference scores one mark. One vague reference scores zero. | 2/1/0 |
|  | Underline and tick each relevant point in the body of the text. The ticks must have a subscript showing which marking point is being rewarded (e.g. ${ }_{\text {A1 }}$ ). |  |
| Q | Quality of written communication (organisation) Rambling and poorly presented material cannot score both marks. | 2/1/0 |

Total 16

Question 1, Power of a Lamp. Results of Trial Experiment
(d) (i)

Gradient of $\log (P / W), \log (R-R 0) / \Omega)$ graph $=2.344 . \quad$ Intercept $=-0.507$
$\log P=\log k+n \log \left(R-R_{0}\right)$, therefore $n=2.344$
Log $\mathrm{k}=-0.507$, therefore $\mathrm{k}=0.311$
(e) (ii)
$\mathrm{P}=24 \mathrm{~W}$
$\log P=\log k+n \log \left(R-R_{0}\right)$
$\log 24=-0.507+2.344 \log \left(R-R_{0}\right)$, hence $R-R_{0}=6.38 \Omega$ and so $R=6.93 \Omega$
$\mathrm{T}=\mathrm{R} \mathrm{T}_{0} / \mathrm{R}_{0}$ where $\mathrm{T}_{0}=293 \mathrm{~K}$ and $\mathrm{R}_{0}=0.55 \Omega$ (from $\mathrm{V} / \mathrm{R}$ graph)
$\mathrm{T}=6.93 \times 293 / 0.55=3692 \mathrm{~K} \approx 3700 \mathrm{~K}$ to 2 s.f.

Question 2 Specimen Results (Bar Magnet)

| $\mathrm{t}_{1} / \mathrm{s}$ | $\mathrm{t}_{2} / \mathrm{s}$ | $\mathrm{t}_{\mathrm{av}} / \mathrm{s}$ | $\mathrm{T} / \mathrm{s}$ | $\mathrm{k}=\mathrm{T} / \mathrm{h}(\mathrm{s} / \mathrm{cm})$ |
| :---: | :--- | :--- | :--- | :--- |
| 9.85 | 9.78 | 9.81 | 0.981 | 0.113 |
| 4.22 | 4.56 | 4.39 | 0.439 | 0.105 |
| 6.46 | 6.38 | 6.42 | 0.642 | 0.107 |
| 13.34 | 13.21 | 13.28 | 1.328 | 0.109 |

(10 oscillations timed)
All values of $k$ within $8 \%$, hence $T \propto h$
Without the magnet on the bench, $\mathrm{t}=19.50 \mathrm{~s}$ for 10 oscillations
Therefore $\mathrm{T}=1.950 \mathrm{~s}$ when suspended magnet is in Earth's field alone
Summary of shorthand notation which may be used in annotating scripts:
SFP Significant figure penalty
ECF Error carried forward
TE Transferred error
AE Arithmetical error
POT Power of ten error
NV Not valid
NR Not relevant
GAP Insufficient scale markings on an axis
NBL Not best line

FO False origin
NE Not enough
NGE Not good enough
BOD Benefit of the doubt
R Point repeated (no further credit)
NA Not allowed
SV Supervisor's value
SR Supervisor's report
OOR Candidate's value is out of range
wtte Words to that effect
eeoo Each error or omission
CON Contradictory physics not to be credited
$\checkmark \Delta$ Used to show that the size of a triangle is appropriate (gradient calculation)
$\checkmark$ A3 Used to show the type of mark awarded for a particular piece of work (Qu. 2)
$\checkmark$ c Used to show that the raw readings are consistent
$\checkmark$ sF Used to show calculated quantities have been given to an appropriate number of significant figures
$\wedge \quad$ Piece of work missing (one mark penalty)
$\wedge \wedge \quad$ Several pieces of work missing (more than one mark penalty)
$\leftrightarrow \quad$ Scale can be doubled in the $x$-direction
$\downarrow \quad$ Scale can be doubled in the $y$-direction

## Grade Thresholds

Advanced GCE Physics A (3883/7883)
June 2008 Examination Series
Unit Threshold Marks

| Unit |  | Maximum | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2821 | Raw | 60 | 39 | 34 | 29 | 24 | 19 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2822 | Raw | 60 | 45 | 40 | 35 | 30 | 25 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2823A | Raw | 120 | 99 | 88 | 77 | 67 | 57 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2823B | Raw | 120 | 99 | 88 | 77 | 67 | 57 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2823C | Raw | 120 | 94 | 85 | 76 | 67 | 58 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2824 | Raw | 90 | 58 | 51 | 44 | 38 | 32 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825A | Raw | 90 | 70 | 64 | 58 | 52 | 46 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825B | Raw | 90 | 69 | 62 | 55 | 48 | 41 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825C | Raw | 90 | 68 | 62 | 56 | 50 | 45 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825D | Raw | 90 | 63 | 56 | 50 | 44 | 38 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2825E | Raw | 90 | 71 | 64 | 57 | 51 | 45 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| 2826A | Raw | 90 | 87 | 78 | 69 | 60 | 51 | 0 |
|  | UMS | 90 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2826B | Raw | 90 | 87 | 78 | 69 | 60 | 51 | 0 |
|  | UMS | 90 | 96 | 84 | 72 | 60 | 48 | 0 |
| 2826C | Raw | 90 | 83 | 76 | 69 | 62 | 55 | 0 |
|  | UMS | 90 | 96 | 84 | 72 | 60 | 48 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 3}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{7 8 8 3}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | $\mathbf{U}$ | Total Number of <br> Candidate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 3}$ | 19.2 | 35.7 | 53.2 | 70.0 | 83.2 | 100 | 7612 |
| $\mathbf{7 8 8 3}$ | 28.0 | 50.1 | 69.6 | 85.9 | 95.8 | 100 | 5923 |

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

